// Story Summary - Recall Engine // L1 chunk + L2 event 召回 // - 全量向量打分 // - 指数衰减加权 Query Embedding // - 实体/参与者加分 // - MMR 去重 // - floor 稀疏去重 import { getAllEventVectors, getAllChunkVectors, getChunksByFloors, getMeta } from './chunk-store.js'; import { embed, getEngineFingerprint } from './embedder.js'; import { xbLog } from '../../../core/debug-core.js'; import { getContext } from '../../../../../../extensions.js'; import { getSummaryStore } from '../data/store.js'; const MODULE_ID = 'recall'; const CONFIG = { QUERY_MSG_COUNT: 5, QUERY_DECAY_BETA: 0.7, QUERY_MAX_CHARS: 600, QUERY_CONTEXT_CHARS: 240, // 因果链 CAUSAL_CHAIN_MAX_DEPTH: 10, // 放宽跳数,让图自然终止 CAUSAL_INJECT_MAX: 30, // 放宽上限,由 prompt token 预算最终控制 CANDIDATE_CHUNKS: 200, CANDIDATE_EVENTS: 150, MAX_CHUNKS: 40, MAX_EVENTS: 120, MIN_SIMILARITY_CHUNK: 0.55, MIN_SIMILARITY_EVENT: 0.6, MMR_LAMBDA: 0.72, BONUS_PARTICIPANT_HIT: 0.08, BONUS_TEXT_HIT: 0.05, BONUS_WORLD_TOPIC_HIT: 0.06, FLOOR_LIMIT: 1, }; // ═══════════════════════════════════════════════════════════════════════════ // 工具函数 // ═══════════════════════════════════════════════════════════════════════════ function cosineSimilarity(a, b) { if (!a?.length || !b?.length || a.length !== b.length) return 0; let dot = 0, nA = 0, nB = 0; for (let i = 0; i < a.length; i++) { dot += a[i] * b[i]; nA += a[i] * a[i]; nB += b[i] * b[i]; } return nA && nB ? dot / (Math.sqrt(nA) * Math.sqrt(nB)) : 0; } function normalizeVec(v) { let s = 0; for (let i = 0; i < v.length; i++) s += v[i] * v[i]; s = Math.sqrt(s) || 1; return v.map(x => x / s); } // ═══════════════════════════════════════════════════════════════════════════ // 因果链追溯(Graph-augmented retrieval) // - 从已召回事件出发,沿 causedBy 向上追溯祖先事件 // - 记录边:chainFrom = 哪个召回事件需要它 // - 不在这里决定“是否额外注入”,只负责遍历与结构化结果 // ═══════════════════════════════════════════════════════════════════════════ function buildEventIndex(allEvents) { const map = new Map(); for (const e of allEvents || []) { if (e?.id) map.set(e.id, e); } return map; } /** * @returns {Map} */ function traceCausalAncestors(recalledEvents, eventIndex, maxDepth = CONFIG.CAUSAL_CHAIN_MAX_DEPTH) { const out = new Map(); const idRe = /^evt-\d+$/; function visit(parentId, depth, chainFrom) { if (depth > maxDepth) return; if (!idRe.test(parentId)) return; const ev = eventIndex.get(parentId); if (!ev) return; // 如果同一个祖先被多个召回事件引用:保留更“近”的深度或追加来源 const existed = out.get(parentId); if (!existed) { out.set(parentId, { event: ev, depth, chainFrom: [chainFrom] }); } else { if (depth < existed.depth) existed.depth = depth; if (!existed.chainFrom.includes(chainFrom)) existed.chainFrom.push(chainFrom); } for (const next of (ev.causedBy || [])) { visit(String(next || '').trim(), depth + 1, chainFrom); } } for (const r of recalledEvents || []) { const rid = r?.event?.id; if (!rid) continue; for (const cid of (r.event?.causedBy || [])) { visit(String(cid || '').trim(), 1, rid); } } return out; } /** * 因果事件排序:引用数 > 深度 > 编号 */ function sortCausalEvents(causalArray) { return causalArray.sort((a, b) => { // 1. 被多条召回链引用的优先 const refDiff = b.chainFrom.length - a.chainFrom.length; if (refDiff !== 0) return refDiff; // 2. 深度浅的优先 const depthDiff = a.depth - b.depth; if (depthDiff !== 0) return depthDiff; // 3. 事件编号排序 return String(a.event.id).localeCompare(String(b.event.id)); }); } function normalize(s) { return String(s || '').normalize('NFKC').replace(/[\u200B-\u200D\uFEFF]/g, '').trim(); } function stripNoise(text) { return String(text || '') .replace(/[\s\S]*?<\/think>/gi, '') .replace(/[\s\S]*?<\/thinking>/gi, '') .replace(/\[tts:[^\]]*\]/gi, '') .trim(); } function buildExpDecayWeights(n, beta) { const last = n - 1; const w = Array.from({ length: n }, (_, i) => Math.exp(beta * (i - last))); const sum = w.reduce((a, b) => a + b, 0) || 1; return w.map(x => x / sum); } // ═══════════════════════════════════════════════════════════════════════════ // Query 构建 // ═══════════════════════════════════════════════════════════════════════════ function buildQuerySegments(chat, count, excludeLastAi) { if (!chat?.length) return []; let messages = chat; if (excludeLastAi && messages.length > 0 && !messages[messages.length - 1]?.is_user) { messages = messages.slice(0, -1); } return messages.slice(-count).map((m, idx, arr) => { const speaker = m.name || (m.is_user ? '用户' : '角色'); const clean = stripNoise(m.mes); if (!clean) return ''; const limit = idx === arr.length - 1 ? CONFIG.QUERY_MAX_CHARS : CONFIG.QUERY_CONTEXT_CHARS; return `${speaker}: ${clean.slice(0, limit)}`; }).filter(Boolean); } async function embedWeightedQuery(segments, vectorConfig) { if (!segments?.length) return null; const weights = buildExpDecayWeights(segments.length, CONFIG.QUERY_DECAY_BETA); const vecs = await embed(segments, vectorConfig); const dims = vecs?.[0]?.length || 0; if (!dims) return null; const out = new Array(dims).fill(0); for (let i = 0; i < vecs.length; i++) { for (let j = 0; j < dims; j++) out[j] += (vecs[i][j] || 0) * weights[i]; } return { vector: normalizeVec(out), weights }; } // ═══════════════════════════════════════════════════════════════════════════ // 实体抽取 // ═══════════════════════════════════════════════════════════════════════════ function buildEntityLexicon(store, allEvents) { const { name1 } = getContext(); const userName = normalize(name1); const set = new Set(); for (const e of allEvents || []) { for (const p of e.participants || []) { const s = normalize(p); if (s) set.add(s); } } const json = store?.json || {}; for (const m of json.characters?.main || []) { const s = normalize(typeof m === 'string' ? m : m?.name); if (s) set.add(s); } for (const a of json.arcs || []) { const s = normalize(a?.name); if (s) set.add(s); } for (const w of json.world || []) { const t = normalize(w?.topic); if (t && !t.includes('::')) set.add(t); } for (const r of json.characters?.relationships || []) { const from = normalize(r?.from); const to = normalize(r?.to); if (from) set.add(from); if (to) set.add(to); } const stop = new Set([userName, '我', '你', '他', '她', '它', '用户', '角色', 'assistant'].map(normalize).filter(Boolean)); return Array.from(set) .filter(s => s.length >= 2 && !stop.has(s) && !/^[\s\p{P}\p{S}]+$/u.test(s) && !/<[^>]+>/.test(s)) .slice(0, 5000); } function extractEntities(text, lexicon) { const t = normalize(text); if (!t || !lexicon?.length) return []; const sorted = [...lexicon].sort((a, b) => b.length - a.length); const hits = []; for (const e of sorted) { if (t.includes(e)) hits.push(e); if (hits.length >= 20) break; } return hits; } // ═══════════════════════════════════════════════════════════════════════════ // MMR // ═══════════════════════════════════════════════════════════════════════════ function mmrSelect(candidates, k, lambda, getVector, getScore) { const selected = []; const ids = new Set(); while (selected.length < k && candidates.length) { let best = null, bestScore = -Infinity; for (const c of candidates) { if (ids.has(c._id)) continue; const rel = getScore(c); let div = 0; if (selected.length) { const vC = getVector(c); if (vC?.length) { for (const s of selected) { const sim = cosineSimilarity(vC, getVector(s)); if (sim > div) div = sim; } } } const score = lambda * rel - (1 - lambda) * div; if (score > bestScore) { bestScore = score; best = c; } } if (!best) break; selected.push(best); ids.add(best._id); } return selected; } // ═══════════════════════════════════════════════════════════════════════════ // L1 Chunks 检索 // ═══════════════════════════════════════════════════════════════════════════ async function searchChunks(queryVector, vectorConfig) { const { chatId } = getContext(); if (!chatId || !queryVector?.length) return []; const meta = await getMeta(chatId); const fp = getEngineFingerprint(vectorConfig); if (meta.fingerprint && meta.fingerprint !== fp) return []; const chunkVectors = await getAllChunkVectors(chatId); if (!chunkVectors.length) return []; const scored = chunkVectors.map(cv => { const match = String(cv.chunkId).match(/c-(\d+)-(\d+)/); return { _id: cv.chunkId, chunkId: cv.chunkId, floor: match ? parseInt(match[1], 10) : 0, chunkIdx: match ? parseInt(match[2], 10) : 0, similarity: cosineSimilarity(queryVector, cv.vector), vector: cv.vector, }; }); // Pre-filter stats for logging const preFilterStats = { total: scored.length, passThreshold: scored.filter(s => s.similarity >= CONFIG.MIN_SIMILARITY_CHUNK).length, threshold: CONFIG.MIN_SIMILARITY_CHUNK, distribution: { '0.8+': scored.filter(s => s.similarity >= 0.8).length, '0.7-0.8': scored.filter(s => s.similarity >= 0.7 && s.similarity < 0.8).length, '0.6-0.7': scored.filter(s => s.similarity >= 0.6 && s.similarity < 0.7).length, '0.55-0.6': scored.filter(s => s.similarity >= 0.55 && s.similarity < 0.6).length, '<0.55': scored.filter(s => s.similarity < 0.55).length, }, }; const candidates = scored .filter(s => s.similarity >= CONFIG.MIN_SIMILARITY_CHUNK) .sort((a, b) => b.similarity - a.similarity) .slice(0, CONFIG.CANDIDATE_CHUNKS); // 动态 K:质量不够就少拿 const dynamicK = Math.min(CONFIG.MAX_CHUNKS, candidates.length); const selected = mmrSelect( candidates, dynamicK, CONFIG.MMR_LAMBDA, c => c.vector, c => c.similarity ); // floor 稀疏去重 const floorCount = new Map(); const sparse = []; for (const s of selected.sort((a, b) => b.similarity - a.similarity)) { const cnt = floorCount.get(s.floor) || 0; if (cnt >= CONFIG.FLOOR_LIMIT) continue; floorCount.set(s.floor, cnt + 1); sparse.push(s); } const floors = [...new Set(sparse.map(c => c.floor))]; const chunks = await getChunksByFloors(chatId, floors); const chunkMap = new Map(chunks.map(c => [c.chunkId, c])); const results = sparse.map(item => { const chunk = chunkMap.get(item.chunkId); if (!chunk) return null; return { chunkId: item.chunkId, floor: item.floor, chunkIdx: item.chunkIdx, speaker: chunk.speaker, isUser: chunk.isUser, text: chunk.text, similarity: item.similarity, }; }).filter(Boolean); // Attach stats for logging if (results.length > 0) { results._preFilterStats = preFilterStats; } return results; } // ═══════════════════════════════════════════════════════════════════════════ // L2 Events 检索 // ═══════════════════════════════════════════════════════════════════════════ async function searchEvents(queryVector, allEvents, vectorConfig, store, queryEntities) { const { chatId, name1 } = getContext(); if (!chatId || !queryVector?.length) { console.warn('[searchEvents] 早期返回: chatId或queryVector为空'); return []; } const meta = await getMeta(chatId); const fp = getEngineFingerprint(vectorConfig); console.log('[searchEvents] fingerprint检查:', { metaFp: meta.fingerprint, currentFp: fp, match: meta.fingerprint === fp || !meta.fingerprint, }); if (meta.fingerprint && meta.fingerprint !== fp) return []; const eventVectors = await getAllEventVectors(chatId); const vectorMap = new Map(eventVectors.map(v => [v.eventId, v.vector])); console.log('[searchEvents] 向量数据:', { eventVectorsCount: eventVectors.length, vectorMapSize: vectorMap.size, allEventsCount: allEvents?.length, }); if (!vectorMap.size) return []; const userName = normalize(name1); const querySet = new Set((queryEntities || []).map(normalize)); // 只取硬约束类的 world topic const worldTopics = (store?.json?.world || []) .filter(w => ['inventory', 'rule', 'knowledge'].includes(String(w.category).toLowerCase())) .map(w => normalize(w.topic)) .filter(Boolean); const scored = (allEvents || []).map((event, idx) => { const v = vectorMap.get(event.id); const sim = v ? cosineSimilarity(queryVector, v) : 0; let bonus = 0; const reasons = []; // participants 命中 const participants = (event.participants || []).map(normalize).filter(Boolean); if (participants.some(p => p !== userName && querySet.has(p))) { bonus += CONFIG.BONUS_PARTICIPANT_HIT; reasons.push('participant'); } // text 命中 const text = normalize(`${event.title || ''} ${event.summary || ''}`); if ((queryEntities || []).some(e => text.includes(normalize(e)))) { bonus += CONFIG.BONUS_TEXT_HIT; reasons.push('text'); } // world topic 命中 if (worldTopics.some(topic => querySet.has(topic) && text.includes(topic))) { bonus += CONFIG.BONUS_WORLD_TOPIC_HIT; reasons.push('world'); } return { _id: event.id, _idx: idx, event, similarity: sim, bonus, finalScore: sim + bonus, reasons, isDirect: reasons.includes('participant'), vector: v, }; }); // 相似度分布日志 const simValues = scored.map(s => s.similarity).sort((a, b) => b - a); console.log('[searchEvents] 相似度分布(前20):', simValues.slice(0, 20)); console.log('[searchEvents] 相似度分布(后20):', simValues.slice(-20)); console.log('[searchEvents] 有向量的事件数:', scored.filter(s => s.similarity > 0).length); console.log('[searchEvents] sim >= 0.6:', scored.filter(s => s.similarity >= 0.6).length); console.log('[searchEvents] sim >= 0.5:', scored.filter(s => s.similarity >= 0.5).length); console.log('[searchEvents] sim >= 0.3:', scored.filter(s => s.similarity >= 0.3).length); // ★ 记录过滤前的分布(用 finalScore,与显示一致) const preFilterDistribution = { total: scored.length, '0.85+': scored.filter(s => s.finalScore >= 0.85).length, '0.7-0.85': scored.filter(s => s.finalScore >= 0.7 && s.finalScore < 0.85).length, '0.6-0.7': scored.filter(s => s.finalScore >= 0.6 && s.finalScore < 0.7).length, '0.5-0.6': scored.filter(s => s.finalScore >= 0.5 && s.finalScore < 0.6).length, '<0.5': scored.filter(s => s.finalScore < 0.5).length, passThreshold: scored.filter(s => s.finalScore >= CONFIG.MIN_SIMILARITY_EVENT).length, threshold: CONFIG.MIN_SIMILARITY_EVENT, }; // ★ 过滤改成用 finalScore(包含 bonus) const candidates = scored .filter(s => s.finalScore >= CONFIG.MIN_SIMILARITY_EVENT) .sort((a, b) => b.finalScore - a.finalScore) .slice(0, CONFIG.CANDIDATE_EVENTS); console.log('[searchEvents] 过滤后candidates:', candidates.length); // 动态 K:质量不够就少拿 const dynamicK = Math.min(CONFIG.MAX_EVENTS, candidates.length); const selected = mmrSelect( candidates, dynamicK, CONFIG.MMR_LAMBDA, c => c.vector, c => c.finalScore ); return selected .sort((a, b) => b.finalScore - a.finalScore) .map(s => ({ event: s.event, similarity: s.finalScore, _recallType: s.isDirect ? 'DIRECT' : 'SIMILAR', _recallReason: s.reasons.length ? s.reasons.join('+') : '相似', _preFilterDistribution: preFilterDistribution, })); } // ═══════════════════════════════════════════════════════════════════════════ // 日志:因果树格式化 // ═══════════════════════════════════════════════════════════════════════════ function formatCausalTree(causalEvents, recalledEvents) { if (!causalEvents?.length) return ''; const lines = [ '', '┌─────────────────────────────────────────────────────────────┐', '│ 【因果链追溯】 │', '└─────────────────────────────────────────────────────────────┘', ]; // 按 chainFrom 分组展示 const bySource = new Map(); for (const c of causalEvents) { for (const src of c.chainFrom || []) { if (!bySource.has(src)) bySource.set(src, []); bySource.get(src).push(c); } } for (const [sourceId, ancestors] of bySource) { const sourceEvent = recalledEvents.find(e => e.event?.id === sourceId); const sourceTitle = sourceEvent?.event?.title || sourceId; lines.push(` ${sourceId} "${sourceTitle}" 的前因链:`); // 按深度排序 ancestors.sort((a, b) => a.depth - b.depth); for (const c of ancestors) { const indent = ' ' + ' '.repeat(c.depth - 1); const ev = c.event; const title = ev.title || '(无标题)'; const refs = c.chainFrom.length > 1 ? ` [被${c.chainFrom.length}条链引用]` : ''; lines.push(`${indent}└─ [depth=${c.depth}] ${ev.id} "${title}"${refs}`); } } lines.push(''); return lines.join('\n'); } // ═══════════════════════════════════════════════════════════════════════════ // 日志:主报告 // ═══════════════════════════════════════════════════════════════════════════ function formatRecallLog({ elapsed, segments, weights, chunkResults, eventResults, allEvents, queryEntities, causalEvents = [], chunkPreFilterStats = null }) { const lines = [ '╔══════════════════════════════════════════════════════════════╗', '║ 记忆召回报告 ║', '╠══════════════════════════════════════════════════════════════╣', `║ 耗时: ${elapsed}ms`, '╚══════════════════════════════════════════════════════════════╝', '', '┌─────────────────────────────────────────────────────────────┐', '│ 【查询构建】最近 5 条消息,指数衰减加权 (β=0.7) │', '│ 权重越高 = 对召回方向影响越大 │', '└─────────────────────────────────────────────────────────────┘', ]; // 按权重从高到低排序显示 const segmentsSorted = segments.map((s, i) => ({ idx: i + 1, weight: weights?.[i] ?? 0, text: s, })).sort((a, b) => b.weight - a.weight); segmentsSorted.forEach((s, rank) => { const bar = '█'.repeat(Math.round(s.weight * 20)); const preview = s.text.length > 60 ? s.text.slice(0, 60) + '...' : s.text; const marker = rank === 0 ? ' ◀ 主导' : ''; lines.push(` ${(s.weight * 100).toFixed(1).padStart(5)}% ${bar.padEnd(12)} ${preview}${marker}`); }); lines.push(''); lines.push('┌─────────────────────────────────────────────────────────────┐'); lines.push('│ 【提取实体】用于判断"亲身经历"(DIRECT) │'); lines.push('└─────────────────────────────────────────────────────────────┘'); lines.push(` ${queryEntities?.length ? queryEntities.join('、') : '(无)'}`); lines.push(''); lines.push('┌─────────────────────────────────────────────────────────────┐'); lines.push('│ 【L1 原文片段】 │'); lines.push('└─────────────────────────────────────────────────────────────┘'); if (chunkPreFilterStats) { const dist = chunkPreFilterStats.distribution || {}; lines.push(` 过滤前: ${chunkPreFilterStats.total} 条`); lines.push(' 相似度分布:'); lines.push(` 0.8+: ${dist['0.8+'] || 0} | 0.7-0.8: ${dist['0.7-0.8'] || 0} | 0.6-0.7: ${dist['0.6-0.7'] || 0}`); lines.push(` 0.55-0.6: ${dist['0.55-0.6'] || 0} | <0.55: ${dist['<0.55'] || 0}`); lines.push(` 通过阈值(>=${chunkPreFilterStats.threshold}): ${chunkPreFilterStats.passThreshold} 条`); lines.push(` MMR+Floor去重后: ${chunkResults.length} 条`); } else { lines.push(` 召回: ${chunkResults.length} 条`); } chunkResults.slice(0, 15).forEach((c, i) => { const preview = c.text.length > 50 ? c.text.slice(0, 50) + '...' : c.text; lines.push(` ${String(i + 1).padStart(2)}. #${String(c.floor).padStart(3)} [${c.speaker}] ${preview}`); lines.push(` 相似度: ${c.similarity.toFixed(3)}`); }); if (chunkResults.length > 15) { lines.push(` ... 还有 ${chunkResults.length - 15} 条`); } lines.push(''); lines.push('┌─────────────────────────────────────────────────────────────┐'); lines.push('│ 【L2 事件记忆】 │'); lines.push('│ DIRECT=亲身经历 SIMILAR=相关背景 │'); lines.push('└─────────────────────────────────────────────────────────────┘'); eventResults.forEach((e, i) => { const type = e._recallType === 'DIRECT' ? '★ DIRECT ' : ' SIMILAR'; const title = e.event.title || '(无标题)'; lines.push(` ${String(i + 1).padStart(2)}. ${type} ${title}`); lines.push(` 相似度: ${e.similarity.toFixed(3)} | 原因: ${e._recallReason}`); }); // 统计 const directCount = eventResults.filter(e => e._recallType === 'DIRECT').length; const similarCount = eventResults.filter(e => e._recallType === 'SIMILAR').length; const preFilterDist = eventResults[0]?._preFilterDistribution || {}; lines.push(''); lines.push('┌─────────────────────────────────────────────────────────────┐'); lines.push('│ 【统计】 │'); lines.push('└─────────────────────────────────────────────────────────────┘'); lines.push(` L1 片段: ${chunkResults.length} 条`); lines.push(` L2 事件: ${eventResults.length} / ${allEvents.length} 条 (DIRECT: ${directCount}, SIMILAR: ${similarCount})`); if (preFilterDist.total) { lines.push(` L2 过滤前分布(${preFilterDist.total} 条,含bonus):`); lines.push(` 0.85+: ${preFilterDist['0.85+'] || 0} | 0.7-0.85: ${preFilterDist['0.7-0.85'] || 0} | 0.6-0.7: ${preFilterDist['0.6-0.7'] || 0}`); lines.push(` 0.5-0.6: ${preFilterDist['0.5-0.6'] || 0} | <0.5: ${preFilterDist['<0.5'] || 0}`); lines.push(` 通过阈值(>=${preFilterDist.threshold || 0.6}): ${preFilterDist.passThreshold || 0} 条`); } lines.push(` 实体命中: ${queryEntities?.length || 0} 个`); if (causalEvents.length) lines.push(` 因果链追溯: ${causalEvents.length} 条`); lines.push(''); // 追加因果树详情 lines.push(formatCausalTree(causalEvents, eventResults)); return lines.join('\n'); } // ═══════════════════════════════════════════════════════════════════════════ // 主入口 // ═══════════════════════════════════════════════════════════════════════════ export async function recallMemory(queryText, allEvents, vectorConfig, options = {}) { const T0 = performance.now(); const { chat } = getContext(); const store = getSummaryStore(); if (!allEvents?.length) { return { events: [], chunks: [], elapsed: 0, logText: 'No events.' }; } const segments = buildQuerySegments(chat, CONFIG.QUERY_MSG_COUNT, !!options.excludeLastAi); let queryVector, weights; try { const result = await embedWeightedQuery(segments, vectorConfig); queryVector = result?.vector; weights = result?.weights; } catch (e) { xbLog.error(MODULE_ID, '查询向量生成失败', e); return { events: [], chunks: [], elapsed: Math.round(performance.now() - T0), logText: 'Query embedding failed.' }; } if (!queryVector?.length) { return { events: [], chunks: [], elapsed: Math.round(performance.now() - T0), logText: 'Empty query vector.' }; } const lexicon = buildEntityLexicon(store, allEvents); const queryEntities = extractEntities([queryText, ...segments].join('\n'), lexicon); const [chunkResults, eventResults] = await Promise.all([ searchChunks(queryVector, vectorConfig), searchEvents(queryVector, allEvents, vectorConfig, store, queryEntities), ]); const chunkPreFilterStats = chunkResults._preFilterStats || null; // ───────────────────────────────────────────────────────────────────── // 因果链追溯:从 eventResults 出发找祖先事件 // 注意:是否“额外注入”要去重(如果祖先事件本来已召回,就不额外注入) // ───────────────────────────────────────────────────────────────────── const eventIndex = buildEventIndex(allEvents); const causalMap = traceCausalAncestors(eventResults, eventIndex); const recalledIdSet = new Set(eventResults.map(x => x?.event?.id).filter(Boolean)); const causalEvents = Array.from(causalMap.values()) .filter(x => x?.event?.id && !recalledIdSet.has(x.event.id)) .map(x => ({ event: x.event, similarity: 0, _recallType: 'CAUSAL', _recallReason: `因果链(${x.chainFrom.join(',')})`, _causalDepth: x.depth, _chainFrom: x.chainFrom, chainFrom: x.chainFrom, depth: x.depth, })); // 排序:引用数 > 深度 > 编号,然后截断 sortCausalEvents(causalEvents); const causalEventsTruncated = causalEvents.slice(0, CONFIG.CAUSAL_INJECT_MAX); const elapsed = Math.round(performance.now() - T0); const logText = formatRecallLog({ elapsed, queryText, segments, weights, chunkResults, eventResults, allEvents, queryEntities, causalEvents: causalEventsTruncated, chunkPreFilterStats, }); console.group('%c[Recall]', 'color: #7c3aed; font-weight: bold'); console.log(`Elapsed: ${elapsed}ms | Entities: ${queryEntities.join(', ') || '(none)'}`); console.log(`L1: ${chunkResults.length} | L2: ${eventResults.length}/${allEvents.length} | Causal: ${causalEventsTruncated.length}`); console.groupEnd(); return { events: eventResults, causalEvents: causalEventsTruncated, chunks: chunkResults, elapsed, logText, queryEntities }; } export function buildQueryText(chat, count = 2, excludeLastAi = false) { if (!chat?.length) return ''; let messages = chat; if (excludeLastAi && messages.length > 0 && !messages[messages.length - 1]?.is_user) { messages = messages.slice(0, -1); } return messages.slice(-count).map(m => { const text = stripNoise(m.mes); const speaker = m.name || (m.is_user ? '用户' : '角色'); return `${speaker}: ${text.slice(0, 500)}`; }).filter(Boolean).join('\n'); }