Files
LittleWhiteBox/modules/story-summary/vector/recall.js

780 lines
34 KiB
JavaScript
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
// Story Summary - Recall Engine
// L1 chunk + L2 event 召回
// - 全量向量打分
// - 指数衰减加权 Query Embedding
// - 实体/参与者加分
// - MMR 去重
// - floor 稀疏去重
import { getAllEventVectors, getAllChunkVectors, getChunksByFloors, getMeta } from './chunk-store.js';
import { embed, getEngineFingerprint } from './embedder.js';
import { xbLog } from '../../../core/debug-core.js';
import { getContext } from '../../../../../../extensions.js';
import { getSummaryStore } from '../data/store.js';
import { filterText } from './text-filter.js';
const MODULE_ID = 'recall';
const CONFIG = {
QUERY_MSG_COUNT: 5,
QUERY_DECAY_BETA: 0.7,
QUERY_MAX_CHARS: 600,
QUERY_CONTEXT_CHARS: 240,
// 因果链
CAUSAL_CHAIN_MAX_DEPTH: 10, // 放宽跳数,让图自然终止
CAUSAL_INJECT_MAX: 30, // 放宽上限,由 prompt token 预算最终控制
CANDIDATE_CHUNKS: 200,
CANDIDATE_EVENTS: 150,
MAX_CHUNKS: 40,
MAX_EVENTS: 120,
MIN_SIMILARITY_CHUNK: 0.6,
MIN_SIMILARITY_EVENT: 0.65,
MMR_LAMBDA: 0.72,
BONUS_PARTICIPANT_HIT: 0.08,
BONUS_TEXT_HIT: 0.05,
BONUS_WORLD_TOPIC_HIT: 0.06,
FLOOR_LIMIT: 1,
};
// ═══════════════════════════════════════════════════════════════════════════
// 工具函数
// ═══════════════════════════════════════════════════════════════════════════
function cosineSimilarity(a, b) {
if (!a?.length || !b?.length || a.length !== b.length) return 0;
let dot = 0, nA = 0, nB = 0;
for (let i = 0; i < a.length; i++) {
dot += a[i] * b[i];
nA += a[i] * a[i];
nB += b[i] * b[i];
}
return nA && nB ? dot / (Math.sqrt(nA) * Math.sqrt(nB)) : 0;
}
function normalizeVec(v) {
let s = 0;
for (let i = 0; i < v.length; i++) s += v[i] * v[i];
s = Math.sqrt(s) || 1;
return v.map(x => x / s);
}
// ═══════════════════════════════════════════════════════════════════════════
// 因果链追溯Graph-augmented retrieval
// - 从已召回事件出发,沿 causedBy 向上追溯祖先事件
// - 记录边chainFrom = 哪个召回事件需要它
// - 不在这里决定“是否额外注入”,只负责遍历与结构化结果
// ═══════════════════════════════════════════════════════════════════════════
function buildEventIndex(allEvents) {
const map = new Map();
for (const e of allEvents || []) {
if (e?.id) map.set(e.id, e);
}
return map;
}
/**
* @returns {Map<string, {event, depth, chainFrom}>}
*/
function traceCausalAncestors(recalledEvents, eventIndex, maxDepth = CONFIG.CAUSAL_CHAIN_MAX_DEPTH) {
const out = new Map();
const idRe = /^evt-\d+$/;
function visit(parentId, depth, chainFrom) {
if (depth > maxDepth) return;
if (!idRe.test(parentId)) return;
const ev = eventIndex.get(parentId);
if (!ev) return;
// 如果同一个祖先被多个召回事件引用:保留更“近”的深度或追加来源
const existed = out.get(parentId);
if (!existed) {
out.set(parentId, { event: ev, depth, chainFrom: [chainFrom] });
} else {
if (depth < existed.depth) existed.depth = depth;
if (!existed.chainFrom.includes(chainFrom)) existed.chainFrom.push(chainFrom);
}
for (const next of (ev.causedBy || [])) {
visit(String(next || '').trim(), depth + 1, chainFrom);
}
}
for (const r of recalledEvents || []) {
const rid = r?.event?.id;
if (!rid) continue;
for (const cid of (r.event?.causedBy || [])) {
visit(String(cid || '').trim(), 1, rid);
}
}
return out;
}
/**
* 因果事件排序:引用数 > 深度 > 编号
*/
function sortCausalEvents(causalArray) {
return causalArray.sort((a, b) => {
// 1. 被多条召回链引用的优先
const refDiff = b.chainFrom.length - a.chainFrom.length;
if (refDiff !== 0) return refDiff;
// 2. 深度浅的优先
const depthDiff = a.depth - b.depth;
if (depthDiff !== 0) return depthDiff;
// 3. 事件编号排序
return String(a.event.id).localeCompare(String(b.event.id));
});
}
function normalize(s) {
return String(s || '').normalize('NFKC').replace(/[\u200B-\u200D\uFEFF]/g, '').trim();
}
function cleanForRecall(text) {
// 1. 应用用户自定义过滤规则
// 2. 移除 TTS 标记(硬编码)
return filterText(text).replace(/\[tts:[^\]]*\]/gi, '').trim();
}
function buildExpDecayWeights(n, beta) {
const last = n - 1;
const w = Array.from({ length: n }, (_, i) => Math.exp(beta * (i - last)));
const sum = w.reduce((a, b) => a + b, 0) || 1;
return w.map(x => x / sum);
}
// ═══════════════════════════════════════════════════════════════════════════
// Query 构建
// ═══════════════════════════════════════════════════════════════════════════
function buildQuerySegments(chat, count, excludeLastAi, pendingUserMessage = null) {
if (!chat?.length) return [];
let messages = chat;
if (excludeLastAi && messages.length > 0 && !messages[messages.length - 1]?.is_user) {
messages = messages.slice(0, -1);
}
// ★ 如果有待处理的用户消息且 chat 中最后一条不是它,追加虚拟消息
if (pendingUserMessage) {
const lastMsg = messages[messages.length - 1];
const lastMsgText = lastMsg?.mes?.trim() || "";
const pendingText = pendingUserMessage.trim();
// 避免重复(如果 chat 已包含该消息则不追加)
if (lastMsgText !== pendingText) {
messages = [...messages, { is_user: true, name: "用户", mes: pendingUserMessage }];
}
}
return messages.slice(-count).map((m, idx, arr) => {
const speaker = m.name || (m.is_user ? '用户' : '角色');
const clean = cleanForRecall(m.mes);
if (!clean) return '';
const limit = idx === arr.length - 1 ? CONFIG.QUERY_MAX_CHARS : CONFIG.QUERY_CONTEXT_CHARS;
return `${speaker}: ${clean.slice(0, limit)}`;
}).filter(Boolean);
}
async function embedWeightedQuery(segments, vectorConfig) {
if (!segments?.length) return null;
const weights = buildExpDecayWeights(segments.length, CONFIG.QUERY_DECAY_BETA);
const vecs = await embed(segments, vectorConfig);
const dims = vecs?.[0]?.length || 0;
if (!dims) return null;
const out = new Array(dims).fill(0);
for (let i = 0; i < vecs.length; i++) {
for (let j = 0; j < dims; j++) out[j] += (vecs[i][j] || 0) * weights[i];
}
return { vector: normalizeVec(out), weights };
}
// ═══════════════════════════════════════════════════════════════════════════
// 实体抽取
// ═══════════════════════════════════════════════════════════════════════════
function buildEntityLexicon(store, allEvents) {
const { name1 } = getContext();
const userName = normalize(name1);
const set = new Set();
for (const e of allEvents || []) {
for (const p of e.participants || []) {
const s = normalize(p);
if (s) set.add(s);
}
}
const json = store?.json || {};
for (const m of json.characters?.main || []) {
const s = normalize(typeof m === 'string' ? m : m?.name);
if (s) set.add(s);
}
for (const a of json.arcs || []) {
const s = normalize(a?.name);
if (s) set.add(s);
}
for (const w of json.world || []) {
const t = normalize(w?.topic);
if (t && !t.includes('::')) set.add(t);
}
for (const r of json.characters?.relationships || []) {
const from = normalize(r?.from);
const to = normalize(r?.to);
if (from) set.add(from);
if (to) set.add(to);
}
const stop = new Set([userName, '我', '你', '他', '她', '它', '用户', '角色', 'assistant'].map(normalize).filter(Boolean));
return Array.from(set)
.filter(s => s.length >= 2 && !stop.has(s) && !/^[\s\p{P}\p{S}]+$/u.test(s) && !/<[^>]+>/.test(s))
.slice(0, 5000);
}
function extractEntities(text, lexicon) {
const t = normalize(text);
if (!t || !lexicon?.length) return [];
const sorted = [...lexicon].sort((a, b) => b.length - a.length);
const hits = [];
for (const e of sorted) {
if (t.includes(e)) hits.push(e);
if (hits.length >= 20) break;
}
return hits;
}
// ═══════════════════════════════════════════════════════════════════════════
// MMR
// ═══════════════════════════════════════════════════════════════════════════
function mmrSelect(candidates, k, lambda, getVector, getScore) {
const selected = [];
const ids = new Set();
while (selected.length < k && candidates.length) {
let best = null, bestScore = -Infinity;
for (const c of candidates) {
if (ids.has(c._id)) continue;
const rel = getScore(c);
let div = 0;
if (selected.length) {
const vC = getVector(c);
if (vC?.length) {
for (const s of selected) {
const sim = cosineSimilarity(vC, getVector(s));
if (sim > div) div = sim;
}
}
}
const score = lambda * rel - (1 - lambda) * div;
if (score > bestScore) {
bestScore = score;
best = c;
}
}
if (!best) break;
selected.push(best);
ids.add(best._id);
}
return selected;
}
// ═══════════════════════════════════════════════════════════════════════════
// L1 Chunks 检索
// ═══════════════════════════════════════════════════════════════════════════
async function searchChunks(queryVector, vectorConfig) {
const { chatId } = getContext();
if (!chatId || !queryVector?.length) return [];
const meta = await getMeta(chatId);
const fp = getEngineFingerprint(vectorConfig);
if (meta.fingerprint && meta.fingerprint !== fp) return [];
const chunkVectors = await getAllChunkVectors(chatId);
if (!chunkVectors.length) return [];
const scored = chunkVectors.map(cv => {
const match = String(cv.chunkId).match(/c-(\d+)-(\d+)/);
return {
_id: cv.chunkId,
chunkId: cv.chunkId,
floor: match ? parseInt(match[1], 10) : 0,
chunkIdx: match ? parseInt(match[2], 10) : 0,
similarity: cosineSimilarity(queryVector, cv.vector),
vector: cv.vector,
};
});
// Pre-filter stats for logging
const preFilterStats = {
total: scored.length,
passThreshold: scored.filter(s => s.similarity >= CONFIG.MIN_SIMILARITY_CHUNK).length,
threshold: CONFIG.MIN_SIMILARITY_CHUNK,
distribution: {
'0.8+': scored.filter(s => s.similarity >= 0.8).length,
'0.7-0.8': scored.filter(s => s.similarity >= 0.7 && s.similarity < 0.8).length,
'0.6-0.7': scored.filter(s => s.similarity >= 0.6 && s.similarity < 0.7).length,
'0.55-0.6': scored.filter(s => s.similarity >= 0.55 && s.similarity < 0.6).length,
'<0.55': scored.filter(s => s.similarity < 0.55).length,
},
};
const candidates = scored
.filter(s => s.similarity >= CONFIG.MIN_SIMILARITY_CHUNK)
.sort((a, b) => b.similarity - a.similarity)
.slice(0, CONFIG.CANDIDATE_CHUNKS);
// 动态 K质量不够就少拿
const dynamicK = Math.min(CONFIG.MAX_CHUNKS, candidates.length);
const selected = mmrSelect(
candidates,
dynamicK,
CONFIG.MMR_LAMBDA,
c => c.vector,
c => c.similarity
);
// floor 稀疏去重:每个楼层只保留该楼层相似度最高的那条
const bestByFloor = new Map();
for (const s of selected) {
const prev = bestByFloor.get(s.floor);
if (!prev || s.similarity > prev.similarity) {
bestByFloor.set(s.floor, s);
}
}
// 最终结果按相似度降序
const sparse = Array.from(bestByFloor.values()).sort((a, b) => b.similarity - a.similarity);
const floors = [...new Set(sparse.map(c => c.floor))];
const chunks = await getChunksByFloors(chatId, floors);
const chunkMap = new Map(chunks.map(c => [c.chunkId, c]));
const results = sparse.map(item => {
const chunk = chunkMap.get(item.chunkId);
if (!chunk) return null;
return {
chunkId: item.chunkId,
floor: item.floor,
chunkIdx: item.chunkIdx,
speaker: chunk.speaker,
isUser: chunk.isUser,
text: chunk.text,
similarity: item.similarity,
};
}).filter(Boolean);
// Attach stats for logging
if (results.length > 0) {
results._preFilterStats = preFilterStats;
}
return results;
}
// ═══════════════════════════════════════════════════════════════════════════
// L2 Events 检索
// ═══════════════════════════════════════════════════════════════════════════
async function searchEvents(queryVector, allEvents, vectorConfig, store, queryEntities) {
const { chatId, name1 } = getContext();
if (!chatId || !queryVector?.length) {
console.warn('[searchEvents] 早期返回: chatId或queryVector为空');
return [];
}
const meta = await getMeta(chatId);
const fp = getEngineFingerprint(vectorConfig);
console.log('[searchEvents] fingerprint检查:', {
metaFp: meta.fingerprint,
currentFp: fp,
match: meta.fingerprint === fp || !meta.fingerprint,
});
if (meta.fingerprint && meta.fingerprint !== fp) return [];
const eventVectors = await getAllEventVectors(chatId);
const vectorMap = new Map(eventVectors.map(v => [v.eventId, v.vector]));
console.log('[searchEvents] 向量数据:', {
eventVectorsCount: eventVectors.length,
vectorMapSize: vectorMap.size,
allEventsCount: allEvents?.length,
});
if (!vectorMap.size) return [];
const userName = normalize(name1);
const querySet = new Set((queryEntities || []).map(normalize));
// 只取硬约束类的 world topic
const worldTopics = (store?.json?.world || [])
.filter(w => ['inventory', 'rule', 'knowledge'].includes(String(w.category).toLowerCase()))
.map(w => normalize(w.topic))
.filter(Boolean);
const scored = (allEvents || []).map((event, idx) => {
const v = vectorMap.get(event.id);
const sim = v ? cosineSimilarity(queryVector, v) : 0;
let bonus = 0;
const reasons = [];
// participants 命中
const participants = (event.participants || []).map(normalize).filter(Boolean);
if (participants.some(p => p !== userName && querySet.has(p))) {
bonus += CONFIG.BONUS_PARTICIPANT_HIT;
reasons.push('participant');
}
// text 命中
const text = normalize(`${event.title || ''} ${event.summary || ''}`);
if ((queryEntities || []).some(e => text.includes(normalize(e)))) {
bonus += CONFIG.BONUS_TEXT_HIT;
reasons.push('text');
}
// world topic 命中
if (worldTopics.some(topic => querySet.has(topic) && text.includes(topic))) {
bonus += CONFIG.BONUS_WORLD_TOPIC_HIT;
reasons.push('world');
}
return {
_id: event.id,
_idx: idx,
event,
similarity: sim,
bonus,
finalScore: sim + bonus,
reasons,
isDirect: reasons.includes('participant'),
vector: v,
};
});
// 相似度分布日志
const simValues = scored.map(s => s.similarity).sort((a, b) => b - a);
console.log('[searchEvents] 相似度分布前20:', simValues.slice(0, 20));
console.log('[searchEvents] 相似度分布后20:', simValues.slice(-20));
console.log('[searchEvents] 有向量的事件数:', scored.filter(s => s.similarity > 0).length);
console.log('[searchEvents] sim >= 0.6:', scored.filter(s => s.similarity >= 0.6).length);
console.log('[searchEvents] sim >= 0.5:', scored.filter(s => s.similarity >= 0.5).length);
console.log('[searchEvents] sim >= 0.3:', scored.filter(s => s.similarity >= 0.3).length);
// ★ 记录过滤前的分布(用 finalScore与显示一致
const preFilterDistribution = {
total: scored.length,
'0.85+': scored.filter(s => s.finalScore >= 0.85).length,
'0.7-0.85': scored.filter(s => s.finalScore >= 0.7 && s.finalScore < 0.85).length,
'0.6-0.7': scored.filter(s => s.finalScore >= 0.6 && s.finalScore < 0.7).length,
'0.5-0.6': scored.filter(s => s.finalScore >= 0.5 && s.finalScore < 0.6).length,
'<0.5': scored.filter(s => s.finalScore < 0.5).length,
passThreshold: scored.filter(s => s.finalScore >= CONFIG.MIN_SIMILARITY_EVENT).length,
threshold: CONFIG.MIN_SIMILARITY_EVENT,
};
// ★ 过滤改成用 finalScore包含 bonus
const candidates = scored
.filter(s => s.finalScore >= CONFIG.MIN_SIMILARITY_EVENT)
.sort((a, b) => b.finalScore - a.finalScore)
.slice(0, CONFIG.CANDIDATE_EVENTS);
console.log('[searchEvents] 过滤后candidates:', candidates.length);
// 动态 K质量不够就少拿
const dynamicK = Math.min(CONFIG.MAX_EVENTS, candidates.length);
const selected = mmrSelect(
candidates,
dynamicK,
CONFIG.MMR_LAMBDA,
c => c.vector,
c => c.finalScore
);
return selected
.sort((a, b) => b.finalScore - a.finalScore)
.map(s => ({
event: s.event,
similarity: s.finalScore,
_recallType: s.isDirect ? 'DIRECT' : 'SIMILAR',
_recallReason: s.reasons.length ? s.reasons.join('+') : '相似',
_preFilterDistribution: preFilterDistribution,
}));
}
// ═══════════════════════════════════════════════════════════════════════════
// 日志:因果树格式化
// ═══════════════════════════════════════════════════════════════════════════
function formatCausalTree(causalEvents, recalledEvents) {
if (!causalEvents?.length) return '';
const lines = [
'',
'┌─────────────────────────────────────────────────────────────┐',
'│ 【因果链追溯】 │',
'└─────────────────────────────────────────────────────────────┘',
];
// 按 chainFrom 分组展示
const bySource = new Map();
for (const c of causalEvents) {
for (const src of c.chainFrom || []) {
if (!bySource.has(src)) bySource.set(src, []);
bySource.get(src).push(c);
}
}
for (const [sourceId, ancestors] of bySource) {
const sourceEvent = recalledEvents.find(e => e.event?.id === sourceId);
const sourceTitle = sourceEvent?.event?.title || sourceId;
lines.push(` ${sourceId} "${sourceTitle}" 的前因链:`);
// 按深度排序
ancestors.sort((a, b) => a.depth - b.depth);
for (const c of ancestors) {
const indent = ' ' + ' '.repeat(c.depth - 1);
const ev = c.event;
const title = ev.title || '(无标题)';
const refs = c.chainFrom.length > 1 ? ` [被${c.chainFrom.length}条链引用]` : '';
lines.push(`${indent}└─ [depth=${c.depth}] ${ev.id} "${title}"${refs}`);
}
}
lines.push('');
return lines.join('\n');
}
// ═══════════════════════════════════════════════════════════════════════════
// 日志:主报告
// ═══════════════════════════════════════════════════════════════════════════
function formatRecallLog({ elapsed, segments, weights, chunkResults, eventResults, allEvents, queryEntities, causalEvents = [], chunkPreFilterStats = null }) {
const lines = [
'╔══════════════════════════════════════════════════════════════╗',
'║ 记忆召回报告 ║',
'╠══════════════════════════════════════════════════════════════╣',
`║ 耗时: ${elapsed}ms`,
'╚══════════════════════════════════════════════════════════════╝',
'',
'┌─────────────────────────────────────────────────────────────┐',
'│ 【查询构建】最近 5 条消息,指数衰减加权 (β=0.7) │',
'│ 权重越高 = 对召回方向影响越大 │',
'└─────────────────────────────────────────────────────────────┘',
];
// 按权重从高到低排序显示
const segmentsSorted = segments.map((s, i) => ({
idx: i + 1,
weight: weights?.[i] ?? 0,
text: s,
})).sort((a, b) => b.weight - a.weight);
segmentsSorted.forEach((s, rank) => {
const bar = '█'.repeat(Math.round(s.weight * 20));
const preview = s.text.length > 60 ? s.text.slice(0, 60) + '...' : s.text;
const marker = rank === 0 ? ' ◀ 主导' : '';
lines.push(` ${(s.weight * 100).toFixed(1).padStart(5)}% ${bar.padEnd(12)} ${preview}${marker}`);
});
lines.push('');
lines.push('┌─────────────────────────────────────────────────────────────┐');
lines.push('│ 【提取实体】用于判断"亲身经历"(DIRECT) │');
lines.push('└─────────────────────────────────────────────────────────────┘');
lines.push(` ${queryEntities?.length ? queryEntities.join('、') : '(无)'}`);
lines.push('');
lines.push('┌─────────────────────────────────────────────────────────────┐');
lines.push('│ 【L1 原文片段】 │');
lines.push('└─────────────────────────────────────────────────────────────┘');
if (chunkPreFilterStats) {
const dist = chunkPreFilterStats.distribution || {};
lines.push(` 过滤前: ${chunkPreFilterStats.total}`);
lines.push(' 相似度分布:');
lines.push(` 0.8+: ${dist['0.8+'] || 0} | 0.7-0.8: ${dist['0.7-0.8'] || 0} | 0.6-0.7: ${dist['0.6-0.7'] || 0}`);
lines.push(` 0.55-0.6: ${dist['0.55-0.6'] || 0} | <0.55: ${dist['<0.55'] || 0}`);
lines.push(` 通过阈值(>=${chunkPreFilterStats.threshold}): ${chunkPreFilterStats.passThreshold}`);
lines.push(` MMR+Floor去重后: ${chunkResults.length}`);
} else {
lines.push(` 召回: ${chunkResults.length}`);
}
chunkResults.slice(0, 15).forEach((c, i) => {
const preview = c.text.length > 50 ? c.text.slice(0, 50) + '...' : c.text;
lines.push(` ${String(i + 1).padStart(2)}. #${String(c.floor).padStart(3)} [${c.speaker}] ${preview}`);
lines.push(` 相似度: ${c.similarity.toFixed(3)}`);
});
if (chunkResults.length > 15) {
lines.push(` ... 还有 ${chunkResults.length - 15}`);
}
lines.push('');
lines.push('┌─────────────────────────────────────────────────────────────┐');
lines.push('│ 【L2 事件记忆】 │');
lines.push('│ DIRECT=亲身经历 SIMILAR=相关背景 │');
lines.push('└─────────────────────────────────────────────────────────────┘');
eventResults.forEach((e, i) => {
const type = e._recallType === 'DIRECT' ? '★ DIRECT ' : ' SIMILAR';
const title = e.event.title || '(无标题)';
lines.push(` ${String(i + 1).padStart(2)}. ${type} ${title}`);
lines.push(` 相似度: ${e.similarity.toFixed(3)} | 原因: ${e._recallReason}`);
});
// 统计
const directCount = eventResults.filter(e => e._recallType === 'DIRECT').length;
const similarCount = eventResults.filter(e => e._recallType === 'SIMILAR').length;
const preFilterDist = eventResults[0]?._preFilterDistribution || {};
lines.push('');
lines.push('┌─────────────────────────────────────────────────────────────┐');
lines.push('│ 【统计】 │');
lines.push('└─────────────────────────────────────────────────────────────┘');
lines.push(` L1 片段: ${chunkResults.length}`);
lines.push(` L2 事件: ${eventResults.length} / ${allEvents.length} 条 (DIRECT: ${directCount}, SIMILAR: ${similarCount})`);
if (preFilterDist.total) {
lines.push(` L2 过滤前分布(${preFilterDist.total}含bonus:`);
lines.push(` 0.85+: ${preFilterDist['0.85+'] || 0} | 0.7-0.85: ${preFilterDist['0.7-0.85'] || 0} | 0.6-0.7: ${preFilterDist['0.6-0.7'] || 0}`);
lines.push(` 0.5-0.6: ${preFilterDist['0.5-0.6'] || 0} | <0.5: ${preFilterDist['<0.5'] || 0}`);
lines.push(` 通过阈值(>=${preFilterDist.threshold || 0.6}): ${preFilterDist.passThreshold || 0}`);
}
lines.push(` 实体命中: ${queryEntities?.length || 0}`);
if (causalEvents.length) lines.push(` 因果链追溯: ${causalEvents.length}`);
lines.push('');
// 追加因果树详情
lines.push(formatCausalTree(causalEvents, eventResults));
return lines.join('\n');
}
// ═══════════════════════════════════════════════════════════════════════════
// 主入口
// ═══════════════════════════════════════════════════════════════════════════
export async function recallMemory(queryText, allEvents, vectorConfig, options = {}) {
const T0 = performance.now();
const { chat } = getContext();
const store = getSummaryStore();
const { pendingUserMessage = null } = options;
if (!allEvents?.length) {
return { events: [], chunks: [], elapsed: 0, logText: 'No events.' };
}
const segments = buildQuerySegments(chat, CONFIG.QUERY_MSG_COUNT, !!options.excludeLastAi, pendingUserMessage);
let queryVector, weights;
try {
const result = await embedWeightedQuery(segments, vectorConfig);
queryVector = result?.vector;
weights = result?.weights;
} catch (e) {
xbLog.error(MODULE_ID, '查询向量生成失败', e);
return { events: [], chunks: [], elapsed: Math.round(performance.now() - T0), logText: 'Query embedding failed.' };
}
if (!queryVector?.length) {
return { events: [], chunks: [], elapsed: Math.round(performance.now() - T0), logText: 'Empty query vector.' };
}
const lexicon = buildEntityLexicon(store, allEvents);
const queryEntities = extractEntities([queryText, ...segments].join('\n'), lexicon);
const [chunkResults, eventResults] = await Promise.all([
searchChunks(queryVector, vectorConfig),
searchEvents(queryVector, allEvents, vectorConfig, store, queryEntities),
]);
const chunkPreFilterStats = chunkResults._preFilterStats || null;
// ─────────────────────────────────────────────────────────────────────
// 因果链追溯:从 eventResults 出发找祖先事件
// 注意:是否“额外注入”要去重(如果祖先事件本来已召回,就不额外注入)
// ─────────────────────────────────────────────────────────────────────
const eventIndex = buildEventIndex(allEvents);
const causalMap = traceCausalAncestors(eventResults, eventIndex);
const recalledIdSet = new Set(eventResults.map(x => x?.event?.id).filter(Boolean));
const causalEvents = Array.from(causalMap.values())
.filter(x => x?.event?.id && !recalledIdSet.has(x.event.id))
.map(x => ({
event: x.event,
similarity: 0,
_recallType: 'CAUSAL',
_recallReason: `因果链(${x.chainFrom.join(',')})`,
_causalDepth: x.depth,
_chainFrom: x.chainFrom,
chainFrom: x.chainFrom,
depth: x.depth,
}));
// 排序:引用数 > 深度 > 编号,然后截断
sortCausalEvents(causalEvents);
const causalEventsTruncated = causalEvents.slice(0, CONFIG.CAUSAL_INJECT_MAX);
const elapsed = Math.round(performance.now() - T0);
const logText = formatRecallLog({
elapsed,
queryText,
segments,
weights,
chunkResults,
eventResults,
allEvents,
queryEntities,
causalEvents: causalEventsTruncated,
chunkPreFilterStats,
});
console.group('%c[Recall]', 'color: #7c3aed; font-weight: bold');
console.log(`Elapsed: ${elapsed}ms | Entities: ${queryEntities.join(', ') || '(none)'}`);
console.log(`L1: ${chunkResults.length} | L2: ${eventResults.length}/${allEvents.length} | Causal: ${causalEventsTruncated.length}`);
console.groupEnd();
return { events: eventResults, causalEvents: causalEventsTruncated, chunks: chunkResults, elapsed, logText, queryEntities };
}
export function buildQueryText(chat, count = 2, excludeLastAi = false) {
if (!chat?.length) return '';
let messages = chat;
if (excludeLastAi && messages.length > 0 && !messages[messages.length - 1]?.is_user) {
messages = messages.slice(0, -1);
}
return messages.slice(-count).map(m => {
const text = cleanForRecall(m.mes);
const speaker = m.name || (m.is_user ? '用户' : '角色');
return `${speaker}: ${text.slice(0, 500)}`;
}).filter(Boolean).join('\n');
}